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Abstract- This paper presents an analytical solution to the problem of a circular debonded thin
film on a substrate subjected to biaxial compressive residual stresses. Contaminated regions may be
the source of debonding during fabrication. and compressive stresses are induced in the film
during the cooling stage of the fabrication process. The presence of such defects may influence the
thermal/mechanical integrity of, for example, microelectronic devices. The stress intensity factors
for this problem are obtained by solving a system of singular integral equations.

INTRODUCTION

Thin layers deposited on substrates may debond as a result of local surface contamination.
Occurrence of debonding is influenced primarily by the mismatch of the material properties
and the residual stresses. For sufficiently large compressive residual stresses, the film over
the area of locally contaminated interface buckles out, thus resulting in debondings. Due
to the significance of thin films in the microelectronic industry, the response of a thin film
on a substrate under compressive residual stresses has been studied by many researchers in
the field.

Among these investigators, Evans and Hutchinson (1984) provided a significant insight
into the understanding of the film/substrate in the presence of an interface debonding. In
their analysis, the debonded thin film was modeled as a clamped circular plate subjected to
radial compressive stress. Chai (1990) investigated the fracture characteristics ofan elliptical
delamination between a thin film and a substrate of the same material. He utilized Von
Karman's plate theory in modeling the delaminated region subjected to biaxial in-plane
and/or transverse loading. The boundary condition along the delamination edge was
approximated as clamped. Both of these analyses incorporated the concept of energy release
rate in order to investigate the debonding growth process, with the assumption that the
debonding cannot grow unless the debonded film buckles. However, these investigations
entail certain limitations: (a) the size of the debonding must be much larger than its
thickness so that the debonded film can be modeled as a plate, (b) the edges of the debonded
region is neither simply supported nor clamped, (c) buckling is a necessary condition for
debonding growth, and (d) the effects arising from the moduli differences between the film
and the substrate are not included, i.e. the oscillating singular behavior of the stress field
near the debonding front.

Almost all the debondings observed by Argon et al. (1989) had circular boundaries.
In their experimental work, interface debonding never occurred in the case of very thin
films because of the lack of a sufficient energy release rate. However, interface debonding
was observed with thicker films. They found the driving force for debonding to be linearly
dependent on the film thickness. Also, a technique was developed that measures the residual
stresses in the film and the critical intrinsic energy release rate for interface debonding.

3465



3466 E. Madenci et al.

The solution method presented in this paper utilizes the three-dimensional equations
of elastic stability to overcome the aforementioned limitations. The solution to the problem
of a thin film with a circular debonding subjected to in-plane axisymmetric compressive
residual stress is obtained by using mathematical techniques appropriate to mixed boundary
value problems. Based on the concept introduced by Madenci (l99Ia) and Madenci and
Westmann (1993), the stress intensity factors are determined by allowing the debonded
region to be slightly perturbed due to the contamination. Utilizing the critical energy release
rate for the interface, this approach permits the determination of critical film thickness for
a controlled fabrication process. The oscillatory nature of the singular stress field arising
in the elasticity solution for an interface debonding causes physically unacceptable inter­
penetration of the film and the substrate near the debonding edge. However, it is confined
to a very small region near the periphery of the debonded region. Based on Comninou's
(1977) work, the energy release rate computed from these stress intensity factors provides
a good approximation to the exact solution that does not permit interpenetration of the
crack faces. If partial contact at the crack tip exists, it may increase the energy available
for debonding growth. Hutchinson and Suo (1992), Qu and Bassani (1993), and Lu and
Chiang (1993) provided an extensive discussion on various definitions of stress intensity
factors for an interfacial crack in isotropic and anisotropic bimaterial systems.

PROBLEM STATEMENT

This study is concerned with the response of a debonded thin film due to the presence
of contamination deposited on a substrate. This film, with thickness h, is subjected to an
in-plane biaxial compressive residual stress, (To, representing the initial equilibrium stress
state. A cylindrical coordinate system (r, e, z) is employed in which the plane z = 0 coincides
with the plane of debonding, as shown in Fig. I. The circular debonding, with radius a = I,
is centered at r = O. Arising from the contamination in the debonded region, the film
deviates slightly from a perfect configuration. This deviation is described by the function

d(r) = (j:1l(r)H(a-r) (I)

in which (j is the amplitude of the deviation and :1I(r) is a smooth function resulting in
small gradients for d(r), i.e. Id'(r)1 « 1, where prime denotes differentiation (throughout
this paper), and H(r) represents the Heaviside step function.

The surfaces prescribing the debonding in the film and the substrate are expressed,
respectively, as

z

Substrate Es'.,s

eTa

Fig. I. A slightly deviated circular debonding between a substrate and a film under biaxial
compression.
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Sf: {r,e,Z~d(r): rE[0,00),eE[0~2n~z=0-}}.

Ss- {r,e,Z. rE[0,00),eE[0,2n),z-0 }

3467

(2)

The thin film and the substrate are composed of homogeneous, elastic and isotropic
materials with different material properties.

In cylindrical coordinates, the displacement equilibrium equations, under axisymmetric
geometric and loading conditions, for an elastic medium with spatially constant initial
stress, 0"0 (Madenci, 199Ib), are expressed as

2(1- v,) [I J 0"0 [I J1-2' -(ru~L+u~,z -(u~,r-u~,zL-br,- -(ru~).r = 0
~, r ,r fJ., r .r

2(1-v,) [I .J I 0"0 I
I 2 -(ru:L+u~.z + -[r(u~.r-u~.JL-br,- -(ru~.r>.r = 0

- v, r ,z r fJ., r

r:J. = fand s (3)

where u: and u~ are the components of the displacement field. t The symbol br, is the
Kronecker delta. The shear modulus and Poisson's ratio are denoted by fJ.. and v,. The sub­
or superscript r:J. refers to the film or substrate of f and s, respectively.

The boundary conditions associated with the traction-free surface of the film are
expressed by

2fJ.r [ r I r J 1~I2' (1-vr)uz•z+vr-(rur).r =0
- j;r r z = -h,

fJ.r(u~.z+ u~.r> = °
rE [0,00). (4)

Along the bond line. z = 0, the continuity of displacement components and the tractions
require that

and

u~ = u; and u~ = u~ rE(a, (0)

2fJ.s [ sis J 2fJ.r [ r I r Jl~1-2 (1-vs)uz.z+vs-(rur),r =-1-2- (I-vr)uz,z+vr-(rur),r
Vs r - Vr r rE(a, 00).

fJ.s (u~,z + u~,r) = fJ.r( u~.z + u~.r)

(5a)

(5b)

As derived by Madenci (199 Ib), the traction-free surfaces of the debonded region require
that

rE[O,a); z=O. (6)

Finally, the far-field regularity conditions require that

u: and u; ---+ ° for r ---+ 00 and z ---+ 00

u/ and u1' ---+ ° for r ---+ 00 and ZE [0, -h).

tThroughout this paper, a repeated index does not imply summation.
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The solution to this boundary-value problem provides the stress intensity factors due to
the non-trivial stress field induced by the slightly deviated debonding and the applied
tractions. When the amplitude of the deviation for the debonding disappears (i.e. (j = 0),
the nature of the boundary-value problem changes and results in an instability problem.
Problems of this kind were investigated by Madenci and Westmann (1991).

SOLUTION METHOD

The solution procedure begins with the integral representation of the displacement
field, given by Harding and Sneddon (1945) as

u~(r, z) = L' t/J~(z, ~)ll (r~) d~

u~(r, z) = IX t/J~(z, Olo(rO d~
o

(J. = f,s. (7)

where t/J~ and t/J~ are unknown auxiliary functions.t Substitution from eqn (7) into eqn (3)
results in a system of coupled ordinary differential equations:

d 2./,' 2(I - v) I d,I,' (J
_'1'_, , Y2.p ~ '1'2 ~ 01'2.1,_ - 0

- I;'I'-----+U-<"'I'
dz 2 1-2v, '1-2v," dz r,p, ,-

(J. = f, s. (8)

Non-trivial solutions to eqn (8) satisfying the regularity conditions are determined to be

and

where

(9b)

1-2vr (Jo
1----- and

2(1 - vr) Pr R o
}'2 = 1--.

Pr

Enforcement of the traction-free conditions (4) on the surface of the film and the
continuity of stresses [eqns (5) and (6)] along the plane of z = 0 permits the determination
of A 2 , A 4 , Br. and B 2 in terms of A I and A 3 • These remaining unknowns are expressed in
terms of two unknown functions,fl (r) andj~(r), corresponding to the displacement deriva­
tives, as given by Arin and Erdogan (1971) :

tIn this paper, i,(x) denotes the Bessel function of the first kind, argument, x, and order v.
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I
f,(r)H(a-r) = [u'(r,O)-u'(r,O»)., !~(r)H(a-r) = - (r[u;(r,O)-u;(r,O)]}.,.

r
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Substitution for A I and A, in terms of!, (r) andj~(r) ensures the continuity of displacement
components along the bonded region [eqn 5(a)]. Imposition of the traction-free conditions
(6) as described by Arin and Erdogan leads to the following system of singular integral
equations:

with constraints

I I'" dl I'"Af+ Bf(l) - + k(r. r)f(l) dl = p(r)
IT . r-I'

'" (/ .., .:.1

11'1 < a (10)

I" II (r) dr = () and
.., iI

I'" I f[/~ (r) dr = 0.
• a

(II)

In this equation, the matrices A, B, and k are given by

(

0
A=

a:
0)' lk II (r, r), k(r,r) =
-I kc1(r,r)

k l. 2 (r, r)].
k 22 (r, r)

The vector p(l') contains the forcing functions PI and P" whose explicit forms are provided
in the Appendix and arise from the slight deviation of the debonding. The vector fer)
contains the unknown functions!, (1') andj~(r). The constants a l and a2, defined explicitly
in the Appendix, depend on the material properties. The expressions for the elements of k
are

kdr,r) = lin i' [hl'/d~)-al]JO(r~)J(I(I~)~d~
.0

r,
k 21 (r,1) = ~irll [b:C!'cl(O-a2]JI(r(IJ1(r~)~d~

• 0

(12)

The expressions for the functions (i,j = I, 2) and for the constants b l and b2 are given
in the Appendix. The functions m, (i = I, 2) are related to the complete elliptic integrals, K
and E, of the first and second kind, respectively, as

and

ml(r. t) =
12101~~KG)+I;1 EG) Irl < 11'1

EC) III > Irl

(13a)
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ItI < II'I

It I > Irl·

(13b)

The dominant part of the system of eqns (10) is decoupled as

I fa dt fag+ - Ag(t) - + K(r, t)g(t) dt = G(r)
J[ t - I'

-a -(I

with the constraint conditions

fa C(t)g(t) dt = °

(14)

in which g = R- ' f, A = R-IDR, K = R -I A-I kR, G = R- I A-I p, and C(t) is defined by

C(t) = [~ OJR.
Itl

The modal matrix of D = A-I B is denoted by R,

The elements. of the diagonal matrix. A, are the eigenvalues of the matrix D, i.e.
All = i/filae and An = -i~~;a2 with i = J-=1.

Adopting the procedure by Muskhelishvili (1953), the fundamental solutions to the
dominant portion of this system of equations (14) are of the form

H'dt) = (l-ty'(I+O/i, with k=I,2 and Itl<1

where'h and f3, are determined to be

in which f; = 1:2n:log lejalae + 1)/(Ja la 2 -1)1 and the overbar denotes the conjugate of
a complex variable. As suggested by Miller and Keer (1985), the solution to g is approxi­
mated as

_,,<PkCt)
gk-u-- with k=I,2

H'dO
(15)



Biaxial compression of a thIn layer 3471

where <l>k(t) are unknown and are approximated by piecewise quadratic polynomials leading
to a numerical collocation scheme as presented by Miller and Keer.

Since/](r) and/2(r) are zero for the interval r > 1, the stress components along z = °
become

(I6a)

(I6b)

Substituting forI] (t) and/2(t) in the singular integrals of eqn (16), from the relation f = Rq
in conjunction with eqn (15). and evaluating these integrals as suggested by Erdogan and
Gupta (1971) lead to the following for r ....... 1+ :

lim azAr,0)=2bbflr ~¢T+t/JT lim ~. cos[Eln(r-I)-dn(r+l)-w]J
r -.--. 1+ 1}' I r - 1 - ,,/,2 _ ]

I' (0) 2" flr ! ",' ,I,' l' 1 [ 1 I I ( 1) J1m~ azr r, = u-
b

V'f'2+'1'2 1m .__cos I: n(r- )-f: n r+ -W2
r ~ 1 2' ~ l' -j r 2 _ 1

in which

(I7a)

(I7b)

R 1] <1>1(1),
cosh (en)

The asymptotic expressions for the stress components in the vicinity of the debonding
are given by Kuo (1984a.b) as

(18)

where K] and K 2 are the stress intensity factors and (JI and (J2 are the phase angles. A
definition of the stress intensity factors in this form was also used successfully by Her (1990)
in an analysis of interface cracks between dissimilar anisotropic materials. In the case of
dissimilar isotropic materials, the stress intensity factors K] and K 2 become equal to each
other, representing the amplitude of the stress intensity, Since the classical definition of the
stress intensity factors for the bimaterial problem does not have the same meaning as that
for the homogeneous case, this definition can be directly invoked in the calculation of the
energy release rate for the bimaterial system given by Malyshev and Salganik (1965). For
the present problem, these parameters, K] and K 2 , are obtained from Eqns (17) and (18)
as
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_I [-rPl sin (dn2)-t/l1 cos (dn2)]
81 = tan .rPl cos (dn2)-t/l1 sm(dn2)

NUMERICAL RESULTS

The governing singular integral equations and the constraint conditions (14) are
reduced to a system of algebraic equations, as suggested by Miller and Keer (1985). Solution
of these equations (14) provides the numerical values of <1>1(1) and <1>2(1), thus leading to
the determination of the stress intensity factors and their corresponding phase angles.
Physically meaningful results exist only if the applied stress is less than the critical value
for buckling. The variation of the normalized stress intensity factors, K 1~/(jEr and
K2~/(jEr, as a function of the normalized applied stress, (5o/Er, is presented in Fig. 2 for a
range of dimensionless film thicknesses, h/a. As shown in this figure, the amplitude of the
stress intensity increases for a specified film thickness under increasing applied stress. As
the applied stress reaches the critical value for buckling, the stress intensity factors approach
infinity. However, it is worth mentioning that the inclusion of the effect of geometric
nonlinearities in the formulation would have eliminated this unboundedness of the stress
intensity factors. The corresponding phase angles are shown in Fig. 3. As observed in this
figure, these angles are very sensitive to the applied stress. The difference between the phase
angles is 90".

Under a specified applied stress, if the amplitude of the stress intensity (or the energy
release rate) for a contamination with fixed geometric parameters equals or exceeds its
critical value for the interface, the analysis indicates that an unstable debonding growth
occurs before buckling. Once the critical value is reached, debonding growth begins, result­
ing in a reduction of the ratio of film thickness to debonding radius. This leads to higher
values of the stress intensity factors; thus, the growth process continues until the ratio of
film thickness to debonding radius decreases to the value where buckling takes places under
the specified applied stress.

The effects of the difference in moduli on the stress intensity factors and the phase
angles are depicted in Figs 4 and 5, respectively. These figures indicate that the difference
in moduli has a significant effect on the amplitudes of the stress intensity and the phase
angles. The amplitudes of the stress intensity and the phase angles tend to increase linearly
with increasing values of the substrate modulus. Due to convergence difficulties in the
numerical evaluation of the infinite integrals, the results are limited to values of h/a and
Es/ Er greater than 0.15 and 1.5, respectively.

CONCLUSIONS

The response of a thin film over a substrate with circular debonding under in-plane
axisymmetric compression is analyzed by solving numerically the singular integral equations
of the second kind for the stresses along the interface. Unlike previous investigations, this
study accounts for the oscillating singular stress field near the debonding front. The analysis
results revealed that the stress intensity factors and the phase angles are very sensitive to
the variation in the film thickness and the difference in moduli for the film and the substrate.
The stress intensity factors are determined to be complex functions of the applied stress;
however, they are linearly dependent on the amplitude of the function describing the
contamination.
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APPENDIX

The constants aJ, a" b,. and b" which are related to the material properties, are obtained as

a
l

= lim "'dO = _ 2,'I,',YII -(I+yi)YIJ

;~''''"(O 2,',y,Y"-(l+)'i)Y,,

a, = lim "',,(¢) = _ 2Y23 -(I+yDY2I

, ;~ x "',,(0 2Y" -(I +yDY Il

in which Y lk = X lk + 2(1- 2vJX" + I (k = I, 2, 3, 4), Y'k = - X lk + X 2k - (- I)k/y, (k = I, 2), and
Y2k = -X ,k +X,,-(-I/Y2 (k = 3. 4). The constants Xu are given by

/lr [ . I +)'~ ]X lk =-- (1-2vJ+(-I)k-,-,-'v, (k=I,2)
)1<; { I

(k = 3,4)

(k = 1,2)
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f1.f[I+J~ k JX'k=14 -2--(-1)1',. (k=3,4)

The expressions for the known functions gJ" are given by

where

in which

I
__ 41',1',+(I+1'D'

'1 -
- 41'l1',-(l+1'D'

I., = -I".

The functions for T,; (i = 1, 3 andj = 1,2, s) are given as

T" = C'3/!:!.; T" = -C I3 !!:!.; T" = (-C'sC,,+C'sC'3)/!:!.

T31 = -C,,/!:!.; T" = C II /!:!.; T3s = (-C"C"+C,,C,,)/!:!.

with

in which

Cis = - (1- 2v,)

C's = -2(l-v,).

The forcing functions in eqn (10), PI (r) and p,(r), are in the form

where

(J f"S(¢) = Dt-- ~'(r)rJ,(r¢)dr.
Jls 0

The function prescribing the slight deviation of the debonding in eqn (I) is assumed as

2 [. ,(r) r r:r;:'?(r)'J~(r) = 1-; sm- ~ +~i-\~) .

This form of .~(r) leads to the closed-form evaluation of the integral for S(¢)
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Then, the forcing functions p, (r) and p,(r) can be rewritten as

where

q,(r)= f ::t,.(O[J,(~()JJo(rOd(

q,(r) = L012,«()[J'(~()JJ,(r()d(-~~~Jl-(;)'
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